
Django-dbindexer Documentation
Release 1.0

Waldemar Kornewald, Thomas Wanschik

March 19, 2013

CONTENTS

1 Tutorials 3

2 Documentation 5

3 Installation 7

4 How does django-dbindexer make unsupported field lookup types work? 9

5 Backend system 11

6 Loading indexes 13
6.1 dbindexer.autodiscover . 13
6.2 Manual imports . 13

i

ii

Django-dbindexer Documentation, Release 1.0

With django-dbindexer you can use SQL features on NoSQL databases and abstract the differences between NoSQL
databases. For example, if your database doesn’t support case-insensitive queries (iexact, istartswith, etc.)
you can just tell the dbindexer which models and fields should support these queries and it’ll take care of maintaining
the required indexes for you. It’s similar for JOINs. Tell the dbindexer that you would like to use in-memory JOINs
for a specific query for example and the dbindexer will make it possible. Magically, previously unsupported queries
will just work. Currently, this project is in an early development stage. The long-term plan is to support more complex
JOINs and at least some simple aggregates, possibly even much more.

CONTENTS 1

Django-dbindexer Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

TUTORIALS

• Getting started: Get SQL features on NoSQL with django-dbindexer

• JOINs for NoSQL databases via django-dbindexer - First steps

3

http://www.allbuttonspressed.com/blog/django/2010/09/Get-SQL-features-on-NoSQL-with-django-dbindexer
http://www.allbuttonspressed.com/blog/django/joins-for-nosql-databases-via-django-dbindexer-first-steps

Django-dbindexer Documentation, Release 1.0

4 Chapter 1. Tutorials

CHAPTER

TWO

DOCUMENTATION

Dependencies: djangotoolbox, django-autoload

5

https://github.com/django-nonrel/djangotoolbox
http://www.allbuttonspressed.com/projects/django-autoload

Django-dbindexer Documentation, Release 1.0

6 Chapter 2. Documentation

CHAPTER

THREE

INSTALLATION

For installation see Get SQL features on NoSQL with django-dbindexer

7

http://www.allbuttonspressed.com/blog/django/2010/09/Get-SQL-features-on-NoSQL-with-django-dbindexer

Django-dbindexer Documentation, Release 1.0

8 Chapter 3. Installation

CHAPTER

FOUR

HOW DOES DJANGO-DBINDEXER
MAKE UNSUPPORTED FIELD LOOKUP

TYPES WORK?

For each filter you want to use on a field for a given model, django-dbindexer adds an additional field to that model. For
example, if you want to use the contains filter on a CharField you have to add the following index definition:

register_index(MyModel, {’name’: ’contains’})

django-dbindexer will then store an additional ListField called ‘idxf_<char_field_name>_l_contains’
on MyModel. When saving an entity, django-dbindexer will fill the ListField with all substrings
of the CharField‘s reversed content i.e. if CharField stores ’Jiraiya’ then the ListField
stores [’J’, ’iJ’, ’riJ’, ’ariJ’ ..., ’ayiariJ’]. When querying on that CharField
using contains, django-dbindexer delegates this filter using startswith on the ListField
with the reversed query string i.e. filter(<char_field_name>__contains=’ira’) =>
filter(’idxf_<char_field_name>_l_contains’__startswith=’ari’) which matches the
content of the list and gives back the correct result set. On App Engine startswith gets converted to “>=” and “<”
filters for example.

In the following is listed which fields will be added for a specific filter/lookup type:

• __iexact using an additional CharField and a __exact query

• __istartswith creates an additional CharField. Uses a __startswith query

• __endswith using an additional CharField and a __startswith query

• __iendswith using an additional CharField and a __startswith query

• __year using an additional IntegerField‘‘and a ‘‘__exact query

• __month using an additional IntegerField and a __exact query

• __day using an additional IntegerField and a __exact query

• __week_day using an additional IntegerField and a __exact query

• __contains using an additional ListField and a __startswith query

• __icontains using an additional ListField and a __startswith query

• __regex using an additional ListField and a __exact query

• __iregex using an additional ListField and a __exact query

9

Django-dbindexer Documentation, Release 1.0

For App Engine users using djangoappengine this means that you can use all django field lookup types for example.

MongoDB users using django-mongodb-engine can benefit from this because case-insensitive filters can be handled
as efficient case-sensitive filters for example.

For regex filters you have to specify which regex filter you would like to execute:

register_index(MyModel, {’name’: (’iexact’, re.compile(’\/*.*?*\/’, re.I)})

This will allow you to use the following filter:

MyModel.objects.all().filter(name__iregex=’\/*.*?*\/’)

10 Chapter 4. How does django-dbindexer make unsupported field lookup types work?

https://github.com/django-nonrel/djangoappengine
https://github.com/django-nonrel/mongodb-engine

CHAPTER

FIVE

BACKEND SYSTEM

django-dbindexer uses backends to resolve lookups. You can specify which backends to use via
DBINDEXER_BACKENDS

settings.py:

DBINDEXER_BACKENDS = (
’dbindexer.backends.BaseResolver’,
’dbindexer.backends.InMemoryJOINResolver’,

)

The BaseResolver is responsible for resolving lookups like __iexact or __regex for example. The
InMemoryJOINResolver is used to resolve JOINs in-memory. The ConstantFieldJOINResolver uses
denormalization in order to resolve JOINs. For more information see JOINs via denormalization for NoSQL coders,
Part 1 is then done automatically by the ConstantFieldJOINResolver for you. :)

11

http://www.allbuttonspressed.com/blog/django/2010/09/JOINs-via-denormalization-for-NoSQL-coders-Part-1-Intro
http://www.allbuttonspressed.com/blog/django/2010/09/JOINs-via-denormalization-for-NoSQL-coders-Part-1-Intro

Django-dbindexer Documentation, Release 1.0

12 Chapter 5. Backend system

CHAPTER

SIX

LOADING INDEXES

First of all, you need to install django-autoload. Then you have to create a site configuration module which loads the
index definitions. The module name has to be specified in the settings:

settings.py:
AUTOLOAD_SITECONF = ’dbindexes’

Now, there are two ways to load database index definitions in the AUTOLOAD_SITECONF module: auto-detection or
manual listing of modules.

Note: by default AUTOLOAD_SITECONF is set to your ROOT_URLCONF.

6.1 dbindexer.autodiscover

autodiscover will search for dbindexes.py in all INSTALLED_APPS and load them. It’s like in django’s
admin interface. Your AUTOLOAD_SITECONF module would look like this:

dbindexes.py:
import dbindexer
dbindexer.autodiscover()

6.2 Manual imports

Alternatively, you can import the desired index definition modules directly:

dbindexes.py:
import myapp.dbindexes
import otherapp.dbindexes

13

http://www.allbuttonspressed.com/projects/django-autoload

	Tutorials
	Documentation
	Installation
	How does django-dbindexer make unsupported field lookup types work?
	Backend system
	Loading indexes
	dbindexer.autodiscover
	Manual imports

